Truth Tables

I. Negation (~: not) expresses the opposite truth value.

p	$\sim p$
T	F
F	T

II. Conjunction (\wedge : and) is true only III. Disjunction (V: or) is false only when both statements are true. when both statements are false.

p	q	$p \wedge p$
T	T	T
T	F	F
F	T	F
F	F	F

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

IV. Conditional $(\rightarrow$: if-then) is false only V. Biconditional $(\leftrightarrow$: if and only if) is when the antecedent (1^{st}) is true and true only when the component the component ($\left.2^{\text {nd }}\right)$ is false. statements have the same truth value.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

VI. Order to perform logic operators in truth tables:

- Parenthesis

○ ()

- Negation \circ ~
- Conjunction o
Λ
- Disjunction o

V

- Conditional and
Biconditional
$\circ \rightarrow$ and \leftrightarrow
VII. Truth Table Examples:

1. $\sim p \wedge p$
2. $\sim(p \wedge q)$

\boldsymbol{p}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{p} \wedge \boldsymbol{p}$
T	F	F
F	T	F

\boldsymbol{p}	\boldsymbol{q}	$(\boldsymbol{p} \wedge \boldsymbol{q})$	$\sim(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

3. $p \vee \sim q$

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{q}$	$\boldsymbol{p} \mathbf{v} \sim \boldsymbol{q}$
T	T	F	T
T	F	T	T
F	T	F	F

4. $\sim(p \vee q)$

\boldsymbol{p}	\boldsymbol{q}	$(\boldsymbol{p} \vee \mathbf{q})$	$\sim(\boldsymbol{p} \vee \mathbf{q})$
T	T	T	F
T	F	T	F
F	T	T	F

F	F	T	T

F	F	F	T

5. $(p \wedge q) \vee r$

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$(\boldsymbol{p} \wedge \boldsymbol{q})$	$(\boldsymbol{p} \wedge \boldsymbol{q}) \mathbf{v} \boldsymbol{r}$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	T
T	F	F	F	F
F	T	T	F	T
F	T	F	F	F
F	F	T	F	T
F	F	F	F	F

6. $p \rightarrow(q \wedge r)$

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$(\boldsymbol{q} \wedge \boldsymbol{r})$	$\boldsymbol{p} \rightarrow(\boldsymbol{q} \wedge \boldsymbol{r})$
T	T	T	T	T
T	T	F	F	F
T	F	T	F	F
T	F	F	F	F
F	T	T	T	T
F	T	F	F	T
F	F	T	F	T

M-T2
7. Determine the truth value for $\sim p \wedge(\sim q \vee r)$ when p is false, q is true, and r is false.
$\sim \mathrm{p} \wedge(\sim \mathrm{q} \vee \mathrm{r}) \quad$ Original statement
$\sim F \wedge(\sim T \vee F) \quad$ Original statement with truth values
$\sim \mathrm{F} \wedge(\mathrm{F} \vee \mathrm{F}) \quad$ Perform the negation in the parenthesis
$\sim F \wedge(F) \quad$ Finish the parenthesis
$\mathrm{T} \wedge(\mathrm{F}) \quad$ Perform the negation
False Perform the conjunction
8. Determine the truth value for $\sim p \vee \sim(q \vee r)$ when p is false, q is true, and r is false.
$\sim p \vee \sim(q \vee r) \quad$ Original statement
\sim F V ~(TVF) Original statement with truth values
\sim F V $\sim(T) \quad$ Perform the parenthesis
TVF Perform the negations
True Perform the disjunction
9. Determine the truth value for $(\sim p \wedge q) \leftrightarrow \sim r$ when p is false, q is true, and r is false.
$(\sim \mathrm{p} \wedge \mathrm{q}) \leftrightarrow \sim \mathrm{r} \quad$ Original statement
$(\sim \mathrm{F} \wedge \mathrm{T}) \leftrightarrow \sim \mathrm{F} \quad$ Original statement with truth values
$(\mathrm{T} \wedge \mathrm{T}) \leftrightarrow \sim \mathrm{F} \quad$ Perform the negation in the parenthesis
(T) $\leftrightarrow \sim \mathrm{F} \quad$ Finish the parenthesis

$$
\mathrm{T} \leftrightarrow \mathrm{~T} \quad \text { Perform the negation }
$$

True Perform the biconditional

Fall 2017

M-T2

